Reg. No.:			

Question Paper Code: 80532

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2024.

Fifth Semester

Electronics and Communication Engineering

EC 8553 – DISCRETE-TIME SIGNAL PROCESSING

(Common to : Biomedical Engineering/Computer and Communication Engineering/Electronics and Telecommunication Engineering/Medical Electronics)

(Regulations 2017)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- 1. Perform circular convolution of the following two sequences: $x(n) = \{1, 0, 1, 1\}$ and $h(n) = \{1, 1, 1\}$.
- 2. Calculate the number of additions and multiplications involved in Direct DFT and FFT Technique for a length N=128.
- 3. Determine H(z) using Impulse Invariant Technique for the following analog system function given by $H(S) = \frac{10}{S^2 + 7S + 10}$ for T = 0.2 Sec.
- 4. The first five points of the 8-point DFT of a real-valued sequence are 5, 1-j3, 0, 3-j4 and 3+j4. Find the remaining DFT co-efficients.
- 5. Give the conditions for impulse response of the FIR filter to have linear phase?
- 6. Define warping effect.
- 7. What do you mean by product round off error?
- 8. State the need of scaling is required in representing number?
- 9. List the classifications of digital signal processors.
- 10. Brief on the concept of pipelining.

PART B - (5 × 13 = 65 marks)

Compute DFT of the given sequence using DIT FFT algorithm. (N = 8) 11. (a) Quentlen Paper Code

- Develop radix-2 decimation in frequency FFT algorithm for evaluating (b) the DFT for N = 16 and fully label it.
- Design a digital Butterworth filter for the following specifications using 12. (a) bilinear transformation:

$$0.9 \le |H(j\omega)| \le 1$$
 for $0 \le \omega \le \frac{\pi}{2}$

$$|H(j\omega)| \le 0.2$$
 for $\frac{3\pi}{4} \le \omega \le \pi$.

- Design an analog Chebyshev low pass filter for the following specifications. $\alpha_p = 3$ dB, $\alpha_s = 16$ dB, $f_p = 1$ kHz, $f_s = 2$ kHz.
- Design a Bandpass FIR Filter for N=7, $\omega_{c_1}=0.3$ radian, $\omega_{c_2}=0.65$ 13. (a) radian using Hamming window. Compare it with Hanning window.

Or

- Use frequency sampling method to design a FIR lowpass filter with (b) $\omega_c = \pi/4$, for N = 15. Plot the magnitude response.
- A signal set $x(n) = \{0.234, 0.789, 0.912, 0.133\}$ is convolved with an impulse response set $h(n) = \{0.7661, 0.9213, 0.2371, 0.5531\}$. If signal samples and coefficients are rounded off to the leading two higher order digits after decimal points. Assuming circular convolution, determine the round off error.

Or

- (b) Discuss the quantization noise with reference to the transfer characteristics of a quantizer.
 - Derive the expression for quantization noise if the word length is B (ii) bits. (7)
- Explain MAC operation and why it is implemented 15. in (a) (i) programmable DSPs. (8)
 - How pipelining increases the throughput efficiency. (5)(ii)

Or

Explain the functions of TMS320C50 Processor with neat diagram. (b)

PART C —
$$(1 \times 15 = 15 \text{ marks})$$

16. (a) Use the bilinear transformation to design a discrete time Chebyshev HPF with an equiripple passband

$$0 \le \left| H\!\left(e^{j\omega} \right) \right| \le 0.1 \,, \qquad \quad 0 \le \omega \le 0.1 \pi \label{eq:delta_estimate}$$

$$0.9 \le \left| H(e^{j\omega}) \right| \le 1.0$$
, $0.3\pi \le \omega \le \pi$

Realize it with minimum no. of delay elements.

Or

- (b) (i) Realize the Direct form structure for the FIR filter described by (8) $H(z) = 1 + 2z^{-1} + 6z^{-2} + 4z^{-3} + 5z^{-4} + 8z^{-5}$
 - (ii) Realize the Linear phase structure for the FIR filter described by (7)

$$H(z) = \frac{1}{2} + \frac{1}{3}z^{-1} + z^{-2} + \frac{1}{4}z^{-3} + z^{-4} + \frac{1}{3}z^{-5} + \frac{1}{2}z^{-6}.$$